Script Induction as Association Rule Mining

Anton Belyy

Benjamin Van Durme

Schematic / Script Knowledge

Understanding the types of events that go together is essential to learn scripts

Schematic / Script Knowledge

Understanding the types of events that go together is essential to learn scripts

Popular approaches:

- Knowledge-based (Minsky, 1974; Schank and Abelson, 1977; Mooney and DeJong, 1985)
- Count-based (Chambers and Jurafsky, 2008, 2009; Jans et al., 2012; Pichotta and Mooney, 2014)
- LM-based (Rudinger et al, 2015; Pichotta and Mooney, 2016; Weber et al., 2018)

Primary focus of this work

Looking at things differently

Different views of popular approaches is also important

Brings in fresh perspective

More literature to borrow from

i.e. tomorrow's advances were maybe considered 30 years ago...

In this work

(Count-based) Script Induction

Association Rule Mining

Narrative Cloze Test (Chambers and Jurafsky, 2008)

event₁ event₂ _____ event₄ ... event_L

- partially ordered set of events
- shares a common actor (protagonist)

Narrative Cloze Test (Chambers and Jurafsky, 2008)

Narrative Cloze Test (Chambers and Jurafsky, 2008)

Unordered PMI Model (Chambers and Jurafsky, 2008)

 $S(e) = pmi(event_1, e) + pmi(event_2, e) + pmi(event_4, e) + \dots + pmi(event_L, e)$

Choose candidate event *e* with the **highest score** S(*e*)

pmi(
$$\boldsymbol{e_1}, \boldsymbol{e_2}$$
) $\propto \log \frac{C(\boldsymbol{e_1}, \boldsymbol{e_2})}{C(\boldsymbol{e_1}, *)C(*, \boldsymbol{e_2})}$

Unordered PMI Model: A Closer Look

Association Rule Mining (Agrawal et al, 1993)

Given a set of narrative chains (transactions):

Mine all **interesting*** rules $X \Rightarrow Y$ of form "if we see a set of events Y, then we probably see another set of events X"

$$int(X \Longrightarrow Y) = P(X | Y) = \frac{\sup(X \cup Y)}{\operatorname{wsup}(Y)}$$

*Interesting rules: all tuples (X, Y) s.t.

 $P(X \mid Y) > t_{int}$

ARM Decoder for Narrative Cloze Test

ARM Decoder vs Unordered PMI model

 $\operatorname{argmax} S(\boldsymbol{e}) = \operatorname{argmax} \operatorname{Pr}(\operatorname{event}_1, \operatorname{event}_2, \dots, \operatorname{event}_L | \boldsymbol{e})$

ARM Decoder: Find most **interesting rules** and **combine** them to explain *e*

event_{ik}

•••

 \Rightarrow

Unordered PMI: Explain *e* using PMI between **pairs** of events

$$event_i \Rightarrow e$$

event_{i1}

Experiments & Results

- New York Times part of Annotated Gigaword
- 20K unique events
- Train: 1.3M chains, 8.7M events
- Dev: 10K chains, 62K events
- Test: 5K chains, 31K events

Performance of different ARM models on the narrative cloze test (dev set)

Experiments & Results

Performance of Count-Based SI models on the narrative cloze test (test set)

Thank you!

Anton Belyy

Benjamin Van Durme

