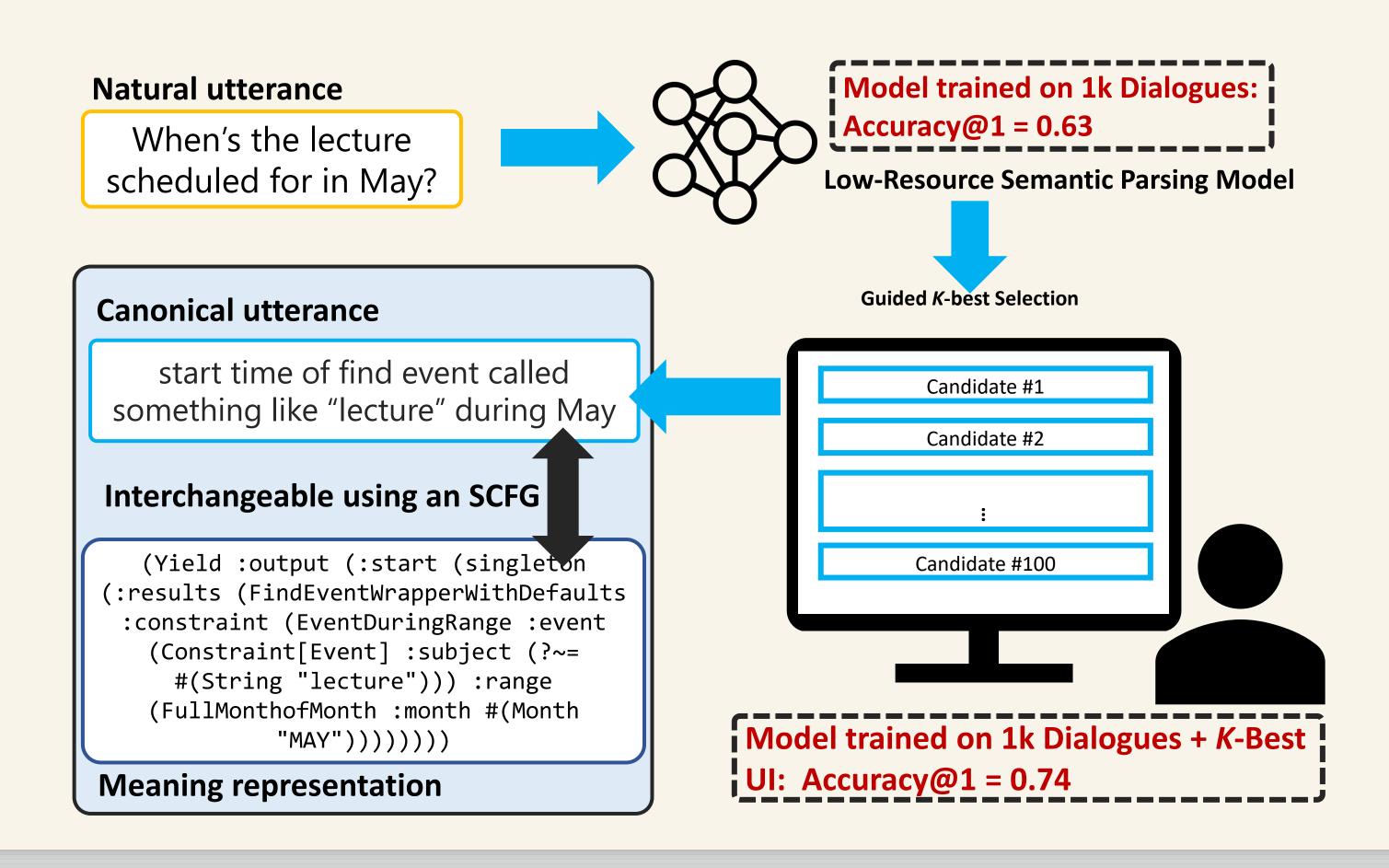
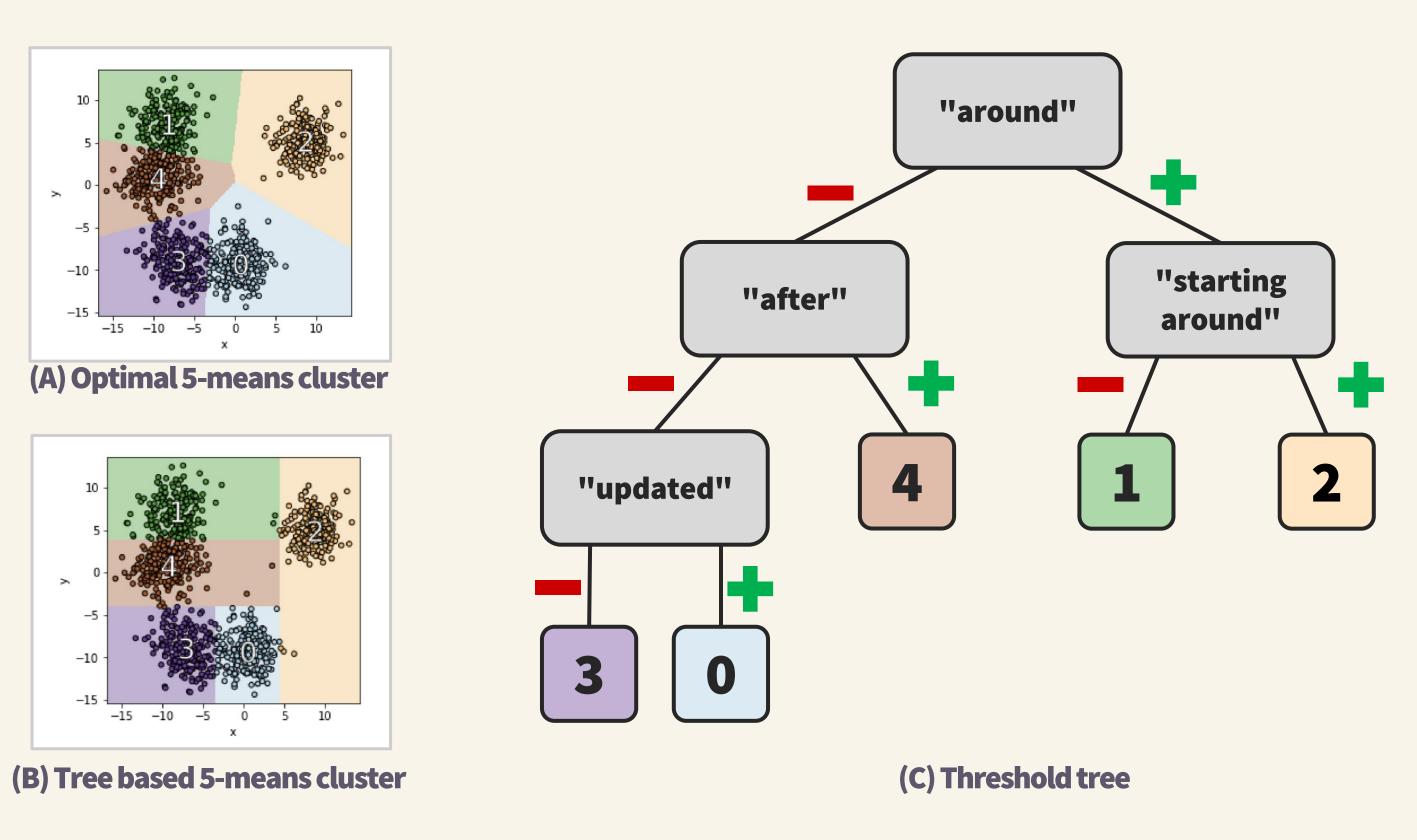
Guided K-best Selection for Semantic Parsing Annotation

Anton Belyy*1, Chieh-Yang Huang*2, Jacob Andreas3, Emmanouil Antonios Platanios3, Sam Thomson3, Richard Shin³, Subhro Roy³, Aleksandr Nisnevich³, Charles Chen³, Benjamin Van Durme³



Introduction

- Collecting data for Conversational Semantic Parsing (CSP) is timeconsuming and demanding.
- K-best selection approach to help?
 - Generate a set of candidates.
 - Ask annotators to traverse the set and select the correct parse.
- How to improve the annotation speed and the accuracy?
 - → Guided K-best selection.


Guided K-best Selection Interfaces

- **5 variants** of guided K-best selection interface.
- no-kbest C-1 and scroll C-2 are baselines.
- autocomplete C-3 allows users to get suggestion autoregressively.
- search C-4 allows users to query candidates in arbitrary order.
- search-keywords © extends search by showing 5 discriminative keywords. Users can choose to include (+) or exclude (-) the keywords.

Keyword Suggestion

- Given a **K-best list**, we extract keywords by:
 - .. Apply k-means to obtain k clusters.
 - 2. We choose one candidate to represent each cluster, resulting k diverse candidates.
 - 3. Using n-gram (n=1, 2, 3) as features, we employ a cluster explanation technique [1] to distill the k diverse candidates into k' keywords. This can be shown as a binary tree (see the example below).

[1] Sanjoy Dasgupta, et al. Explainable k-means and k-medians clustering. ICML 2020.

Experiment - Interface Comparison

[Data]

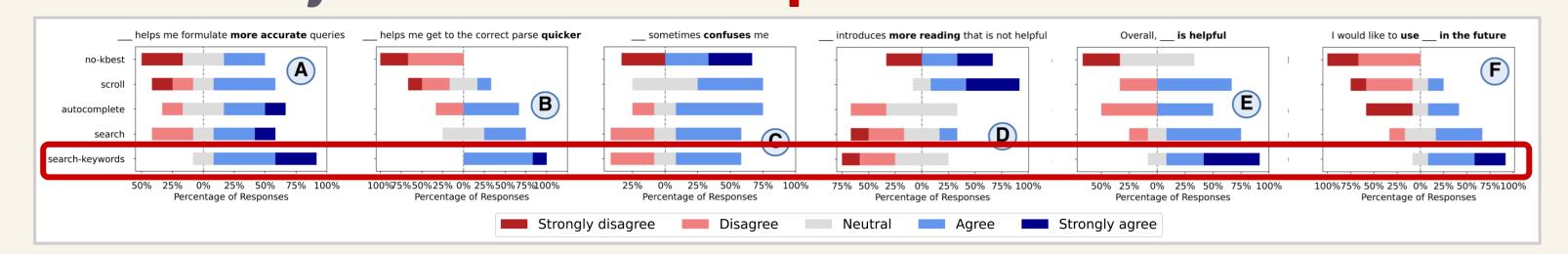
- We sampled **300 utterances** from SMCalFlow [2].
- VACSP-1k [3] is used to generate **K=100 candidate** parses.
- Stratified sampling is used to control the distribution of gold answers.

	Top-5	Top-20	Top-100	Escalate
Stratified True	25%	25%	25%	25%
	76%	6%	4%	14%

[Participants]

- A total of 5 participants joined the experiment.
- Participants where randomly assigned to a particular interface and data split.

[2] Semantic Machines, et al. "Task-oriented dialogue as dataflow synthesis." TACL 2020. [3] Platanios, Emmanouil Antonios, et al. "Value-Agnostic Conversational Semantic Parsing." ACL 2021.


[Result]

- **Autocomplete** achieves the **highest accuracy**.
- **Search** helps **reduce time usage** up to 35% compared to **Scroll**.
- **Search-keywords** strikes the **balance** between accuracy and time usage.

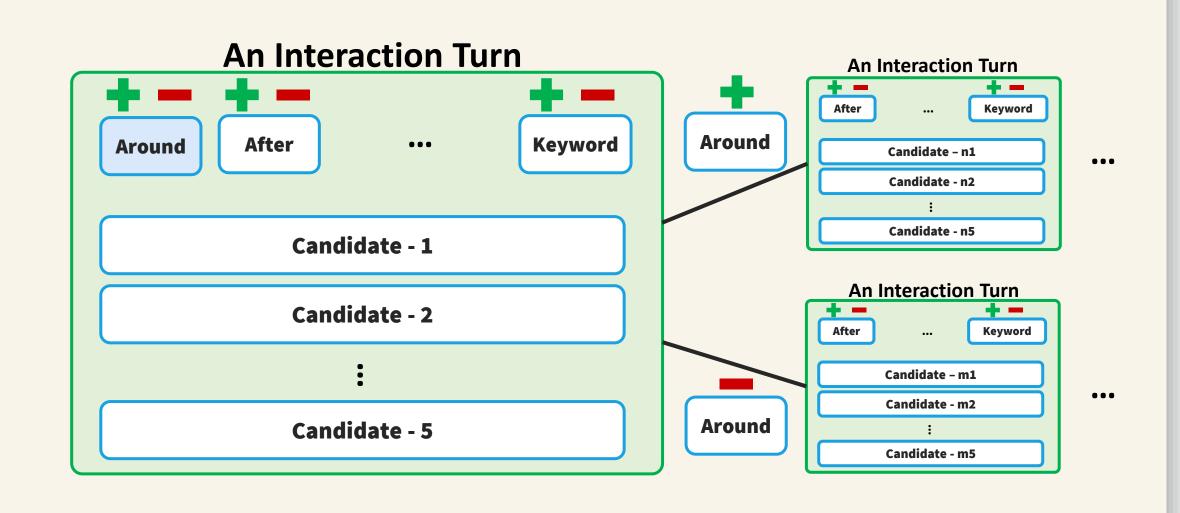
	Exact Match Accuracy ↑				Median Time (sec) ↓							
	Top-5	Top-20	Top-100	Escalate	Escalate _m	All	True	Top-5	Top-20	Top-100	Escalate	All
No-KBest	.411	.189	.123	.400	.067	.197	.339	56.13	73.17	97.48	74.29	69.43
Scroll	<u>.880</u>	.320	<u>.213</u>	<u>.453</u>	.067	.370	.706	13.00	25.84	<u>26.47</u>	<u>30.23</u>	24.73
Autocomplete	.919	.370	.333	.427	.067	.422	.743	13.71	26.01	30.02	31.47	25.53
Search	.878	.320	.213	.400	.080	.373	.707	8.48	19.09	17.16	19.55	16.02
Search-Keywords	<u>.880</u>	.419	.213	.480	.093	<u>.401</u>	<u>.716</u>	12.78	<u>24.51</u>	36.26	31.15	23.91

[User Feedback]

Search-keywords is rated as the **top choice** across all criteria.

Experiment – Guidance Comparison

[Experiment]


Compared Keyword Suggestion with PDC algorithm [4].

[Oracle Simulation]

- Optimal Solution.
- KS and PDC significantly reduce the number of turns in Top-100.
- Adding explanations (KS) doesn't hurt the performance.

[Human Annotation]

Adding explanations (KS) can further reduce the annotation time compared to PDC.

	Oracle simulation results $(k = 5)$ Average number of turns \downarrow				Human annotation results $(k = 5)$ Median time (sec) \downarrow				
	Top-5	Top-20	Top-100	All	Top-5	Top-20	Top-100	All	
KS (ours)	<u>1.10</u>	2.39	2.80	1.24	15.30	46.99	48.20	36.71	
PDC (k-means, canonical) PDC (agglomerative, canonical) PDC (agglomerative, meaning)	1.11 1.16 1.15	2.40 2.73 2.68	2.84 3.10 2.91	1.24 1.31 <u>1.29</u>	25.09 — —	73.23	<u>55.42</u> —	52.94 —	
Scroll	1.00	2.63	7.75	1.33	<u>24.18</u>	42.30	56.37	<u>37.21</u>	

[4] Ippolito, Daphne, et al. "Comparison of diverse decoding methods from conditional language models." ACL (2019)